Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA).
نویسندگان
چکیده
The p110α catalytic subunit (PIK3CA) is one of the most frequently mutated genes in cancer. We have examined the activation of the wild-type p110α/p85α and a spectrum of oncogenic mutants using hydrogen/deuterium exchange mass spectrometry (HDX-MS). We find that for the wild-type enzyme, the natural transition from an inactive cytosolic conformation to an activated form on membranes entails four distinct events. Analysis of oncogenic mutations shows that all up-regulate the enzyme by enhancing one or more of these dynamic events. We provide the first insight into the activation mechanism by mutations in the linker between the adapter-binding domain (ABD) and the Ras-binding domain (RBD) (G106V and G118D). These mutations, which are common in endometrial cancers, enhance two of the natural activation events: movement of the ABD and ABD-RBD linker relative to the rest of the catalytic subunit and breaking the C2-iSH2 interface on binding membranes. C2 domain mutants (N345K and C420R) also mimic these events, even in the absence of membranes. A third event is breaking the nSH2-helical domain contact caused by phosphotyrosine-containing peptides binding to the enzyme, which is mimicked by a helical domain mutation (E545K). Interaction of the C lobe of the kinase domain with membranes is the fourth activation event, and is potentiated by kinase domain mutations (e.g., H1047R). All mutations increased lipid binding and basal activity, even mutants distant from the membrane surface. Our results elucidate a unifying mechanism in which diverse PIK3CA mutations stimulate lipid kinase activity by facilitating allosteric motions required for catalysis on membranes.
منابع مشابه
p85β increases phosphoinositide 3-kinase activity and accelerates tumor progression
p110α; moreover, in transfected cells, increased p85β/p110α expression moderately enhanced PI3K activity in basal conditions. Nevertheless, both p85α/ p110αand p85β/p110α-expressing cells showed maximal PI3K activation only after growth factor addition, suggesting that despite basal activation, p85β/p110α responds to receptor stimulation. These results imply a difference in the effects of p85α ...
متن کاملA drug targeting only p110α can block phosphoinositide 3-kinase signalling and tumour growth in certain cell types
Genetic alterations in PI3K (phosphoinositide 3-kinase) signalling are common in cancer and include deletions in PTEN (phosphatase and tensin homologue deleted on chromosome 10), amplifications of PIK3CA and mutations in two distinct regions of the PIK3CA gene. This suggests drugs targeting PI3K, and p110α in particular, might be useful in treating cancers. Broad-spectrum inhibition of PI3K is ...
متن کاملMolecular Mechanisms of Human Disease Mediated by Oncogenic and Primary Immunodeficiency Mutations in Class IA Phosphoinositide 3-Kinases
The signaling lipid phosphatidylinositol 3,4,5, trisphosphate (PIP3) is an essential mediator of many vital cellular processes, including growth, survival, and metabolism. PIP3 is generated through the action of the class I phosphoinositide 3-kinases (PI3K), and their activity is tightly controlled through interactions with regulatory proteins and activating stimuli. The class IA PI3Ks are comp...
متن کاملSingle copies of mutant KRAS and mutant PIK3CA cooperate in immortalized human epithelial cells to induce tumor formation.
The selective pressures leading to cancers with mutations in both KRAS and PIK3CA are unclear. Here, we show that somatic cell knockin of both KRAS G12V and oncogenic PIK3CA mutations in human breast epithelial cells results in cooperative activation of the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways in vitro, and leads to tumor formation in immunocompr...
متن کاملEffects of Novel Isoform-Selective Phosphoinositide 3-Kinase Inhibitors on Natural Killer Cell Function
Phosphoinositide 3-kinases (PI3Ks) are promising targets for therapeutic development in cancer. The class I PI3K isoform p110α has received considerable attention in oncology because the gene encoding p110α (PIK3CA) is frequently mutated in human cancer. However, little is known about the function of p110α in lymphocyte populations that modulate tumorigenesis. We used recently developed investi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 38 شماره
صفحات -
تاریخ انتشار 2012